Modulation of cellular calcium by sigma-2 receptors: release from intracellular stores in human SK-N-SH neuroblastoma cells.
نویسندگان
چکیده
Human SK-N-SH neuroblastoma cells expressed sigma-1 and sigma-2 receptors with similar pharmacological profiles to those of rodent-derived tissues, although sigma-2 receptors exhibited some affinity differences that might suggest heterogeneity or species differences. Structurally diverse sigma ligands produced two types of increases in intracellular (cytosolic) Ca(2+) concentration ([Ca(2+)](i)) in these cells. CB-64D, CB-64L, JL-II-147, BD737, LR172, BD1008, haloperidol, reduced haloperidol, and ibogaine all produced an immediate, dose-dependent, and transient rise in [Ca(2+)](i). Sigma-inactive compounds structurally similar to the most active sigma ligands and ligands for several neurotransmitter receptors produced little or no effect. The high activity of CB-64D and ibogaine (sigma-2-selective ligands) compared with the low activity of (+)-pentazocine and other (+)-benzomorphans (sigma-1-selective ligands), in addition to enantioselectivity for CB-64D over CB-64L, strongly indicated mediation by sigma-2 receptors. The effect of CB-64D and BD737 was blocked by the sigma antagonists BD1047 and BD1063, further confirming specificity as a receptor-mediated event. The transient rise in [Ca(2+)](i) occurred in the absence of extracellular Ca(2+) and was completely eliminated by pretreatment of cells with thapsigargin. Thus, sigma-2 receptors stimulate a transient release of Ca(2+) from the endoplasmic reticulum. Prolonged exposure of cells to sigma-receptor ligands resulted in a latent and sustained rise in [Ca(2+)](i), with a pharmacological profile identical to that of the transient rise. This sustained rise in [Ca(2+)](i) was affected by neither the removal of extracellular Ca(2+) nor thapsigargin pretreatment, suggesting latent sigma-2 receptor-induced release from thapsigargin-insensitive intracellular Ca(2+) stores. Sigma-2 receptors may use Ca(2+) signals in producing cellular effects.
منابع مشابه
Cytosolic calmodulin is increased in SK-N-SH human neuroblastoma cells due to release of calcium from intracellular stores.
Muscarinic receptor stimulation elicits a redistribution of calmodulin (CaM) from the membrane fraction to cytosol in the human neuroblastoma cell line SK-N-SH. Increasing the intracellular Ca2+ concentration with ionomycin also elevates cytosolic CaM. The aim of this study was to investigate the roles of extracellular and intracellular Ca2+ pools in the muscarinic receptor-mediated increases i...
متن کاملCalcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells
Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular Ca2+ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovaria...
متن کاملSigma-2 Receptors Play a Role in Cellular Metabolism: Stimulation of Glycolytic Hallmarks by CM764 in Human SK-N-SH Neuroblastoma.
Sigma-2 receptors are attractive antineoplastic targets due to their ability to induce apoptosis and their upregulation in rapidly proliferating cancer cells compared with healthy tissue. However, this role is inconsistent with overexpression in cancer, which is typically associated with upregulation of prosurvival factors. Here, we report a novel metabolic regulatory function for sigma-2 recep...
متن کاملInvolvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملNeuropeptide FF (NPFF) analogs functionally antagonize opioid activities in NPFF2 receptor-transfected SH-SY5Y neuroblastoma cells.
To elucidate the mechanism of the cellular antiopioid activity of neuropeptide FF (NPFF), we have transfected the SH-SY5Y neuroblastoma cell line, which expresses mu-and delta-opioid receptors, with the human NPFF2receptor. The selected clone, SH2-D9, expressed high-affinity NPFF2 receptors in the same range order as mu- and delta-opioid receptors (100-300 fmol/mg of protein). The NPFF analog [...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 292 3 شماره
صفحات -
تاریخ انتشار 2000